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We report a study of the flow patterns associated with Rayleigh-BBnard convection 
in rectangular containers of approximate proportions 10 x 5 x 1 at Prandtl numbers 
r~ between 2 and 20. The flow is studied at  Rayleigh numbers ranging from the onset 
of convective flow to the onset of time dependence ; Nusselt-number measurements 
are also presented. The results are discussed in the content of the theory for the 
stability of a laterally infinite system of parallel rolls. We observed transitions 
between time-independent flow patterns which depend on roll wavenumber, Ray- 
leigh number and Prandtl number in a manner that is reasonably well described by 
this theory. For u 5 10, the skewed-varicose instability (which leads directly to time 
dependence in much larger containers) is found to initiate transitions between 
time-independent patterns. We are then able to study the approach to time 
dependence in a regime of larger Rayleigh number where the instabilities in the flow 
are found to have an intrinsic time dependence. In this regime, the onset of time 
dependence appears to be explained by the recent predictions of Bolton, Busse & 
Clever for a new set of time-dependent instabilities. 

1. Introduction 
Pattern formation and time dependence in non-equilibrium dissipative systems are 

problems of considerable interest, both from a practical point of view and as unsolved 
problems in many-body physics. A classic example of such a system is convection 
in a horizontal fluid layer heated from below (i.e. Rayleigh-BBnard convection). This 
system is particularly appealing since, from a theoretical point of view, the fluid 
equations which describe the system are well known, and, from an experimental 
viewpoint, the boundary conditions on the fluid can be well controlled. Although there 
has been extensive theoretical and experimental work on this problem, many 
questions still remain to be answered. 

Consider the evolution of such a system as the temperature difference (in dimension- 
less units the Rayleigh number R) across the fluid layer is increased. Convec- 
tion begins at  some threshold Rayleigh number R,; below this value there is 
no flow, and the heat is transmitted by conduction through the fluid. For the 
rectangular containers discussed here, the first spatial pattern above R, is confirmed 
both experimentally and theoretically to be a stationary system of parallel rolls. As 
R is further increased, this flow pattern can evolve quasi-statically, or it can become 
intrinsically time dependent. At sufficiently large R, the flow eventually becomes 
turbulent. If R is raised quickly above R,, other (metastable) flow patterns can be 
induced. These details of pattern selection and time dependence are known to depend 
on the shape and dimensions of the container (i.e. the aspect ratios, which are ratios 
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of the lateral extent to the height of the container) and on the Prandtl number u 
(which is the ratio of the viscosity to the thermal diffusivity of the fluid) (see 
Behringer, Gao & Shaumeyer 1983; Berg6 1981; Busse & Whitehead 1971; Gollub 
& Benson 1980). The dependence of pattern selection and time dependence on these 
parameters is as yet not well understood. 

In  this paper we report a study of pattern formation in rectangular containers of 
approximate aspect ratio 10 x 5 in an environment where the boundary conditions 
are as well controlled as possible. The evolution of the fluid flow is studied as a 
function of Rayleigh number until persistent time dependence (in contrast to 
transient rearrangements of the flow pattern) is observed. By studying convection 
in a container of aspect ratio which is finite but not small, we are able to study facets 
of pattern formation and time dependence which either do not occur or are masked 
by other effects in containers of different geometry. The work presented here is part 
ofalargereffort to understand thedynamicsofa convecting fluid in the time-dependent 
regime. Since there is considerable evidence that the details of the spatial pattern 
of the flow strongly influence the time-dependent phenomena (Gollub & Benson 1980; 
Behringer et al. 1983), i t  is important to understand the spatial flow pattern in detail. 

The choice of aspect ratio r of the convection containers discussed here was 
motivated by two considerations. For small containers (e.g. r 5 5), changes in the 
flow pattern are severely restricted by the boundaries, and the flow becomes time 
dependent in a manner which is similar to that observed in dynamical systems of low 
dimensionality (Gollub & Benson 1980; Maurer & Libchaber 1980; Dubois & Berg6 
1980). It seems unlikely that the dynamics in these systems is closely related to the 
dyanamics in larger fluid systems. On the other hand, for large systems (e.g. r 2 20), 
the initial time dependence is typically a slow motion of the roll pattern on the 
timescale of the horizontal-diffusion time (Gollub, McCarriar & Steinman 1982). This 
slow motion makes it difficult to distinguish clearly other changes and instabilities 
in the pattern. Thus our choice of aspect ratio was motivated by the desire to have 
a container sufficiently large that one could observe changes in the spatial flow 
pattern well before the onset of chaotic time dependence, but small enough so that 
the parallel container boundaries would inhibit slow wandering of the rolls. One 
advantage of this choice is that a container of aspect ratio 10 x 5 is easier to maintain 
in a well-controlled thermal environment than a container of a very large aspect ratio. 
A disadvantage is that this regime is more difficult to  treat theoretically, since the 
infinite-aspect-ratio calculations are significantly modified by the finite lateral 
dimensions of the container. 

Much intuition about changes in the spatial pattern of the flow has come from 
calculations of the stability of uniform periodic rolls in a laterally infinite fluid layer. 
Since the number of parameters which describe the evolution of the flow pattern is 
large (i.e. including the Prandtl number, the Rayleigh number, and the initial state 
of the flow), even the infinite-aspect-ratio case poses a formidable problem (Busse 
1978). The stability of parallel-roll convection is illustrated in figures 1 and 2, where 
the stability boundaries are showii as a function of Rayleigh number and roll 
wavenumber at for Prandtl numbers 3.5 and 15 respectively (Busse & Clever 1979; 
Clever & Busse 1974; Busse 1978; Bolton, Busse & Clever 1983; Busse & Whitehead 
1971, 1974). Below the heavy solid line in each figure there is no fluid motion. In the 
shaded regions in Rayleigh-number and wavenumber space, convection in a pattern 
of straight parallel rolls is stable. Beyond these regions, parallel-roll convection is 

t The wavenumber a is defined as a = 2rcd/A, where d is the height of the fluid layer and A is 
the repeat distance of this pattern of parallel rolls. 
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FIGURE 1. Stability diagram for a convection pattern of straight parallel rolls of wavenumber a 
for Prandtl number 3.5 assuming infinite lateral boundary conditions. This pattern is stable in the 
shaded region. The vertical dashed lines indicate the quantization of mean roll wavenumber by 
the finite aspect ratio of container A (cf. table 1). The numbers indicate the number of rolls parallel 
to the short side of the container. Note. The calculated stability boundaries presented in this paper 
are interpolated and extrapolated from the calculations of Busse, Bolton, and Clever (Busse & Clever 
1979; Busse 1978; Bolton, Busse & Clever 1983; and private communications). Although the curves 
presented should be qualitatively correct, uncertainties of 10-20 yo are possible in some cases. 

unstable to the various instabilities indicated by the lighter solid lines. It can be seen 
by comparing figures 1 and 2 that these instability boundaries have a significant 
Prandtl-number dependence. In  contrast to the case of infinite aspect ratio, one 
important effect of a container of finite aspect ratio is that it  must contain an integral 
number of rolls. To a first approximation (i.e. assuming constant wavelength), this 
means that the wavenumber a is quantized. In figures 1 and 2 the dashed vertical 
lines identify the mean wavenumbers corresponding to the integral number of rolls 
in our experimental containers. 

Assuming for a moment that the theory is unmodified for a container of finite aspect 
ratio, we would expect that beyond the stability boundaries an initial flow pattern 
of parallel rolls would change; however, prediction of the ha1 state of the flow is 
beyond the scope of this linear theory. For example, as shown in figure 1, a state with 
nine parallel rolls a t  a Rayleigh number of 7 is unstable to the skewed-varicose 
instability. Possible stable states of the system at this Rayleigh number include flow 
patterns with 6, 7 or 8 parallel rolls. However, whether transitions to such states 
actually occur and, if so, the likelihood of their occurrence is not known. The 
experiments described in this paper show that the system prepared in this way does, 
in fact, evolve to stable, time-independent states of either 7 or 8 rolls. 

As another example of pattern evolution, consider for Prandtl number 3.5 (figure 1) 
a stable pattern of six rolls at Rayleigh number of 9R,. As R is further increased, 
the system of parallel rolls becomes unstable for all wavenumbers at  about 13R,. Our 
experiments show that as a function of increasing R the pattern of parallel rolls first 
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FIQURE 2. Stability diagram for a convection pattern of straight parallel rolls of wavenumber a 
for Prandtl number 15 assuming infinite lateral boundary conditions. This pattern is stable in the 
shaded region. The vertical dashed lines indicate the quantization of mean roll wavenumber by 
the finite aspect ratio of container B (cf. table 1 ). The numbers indicate the number of rolls (parallel 
to the short side of the container, except as noted). (See note, figure 1 . )  

becomes distorted and then becomes time-dependent. The time dependence can be 
qualitatively understood in the context of recent theoretical predictions by Bolton, 
Busse & Clever (1983) for a set of modes in this range of wavenumber and Rayleigh 
number. These calculations predict an oscillatory instability a t  discrete frequencies 
which are multiples of the characteristic frequency of circulation of a fluid element 
around a roll. 

As illustrated in figure 2 for a Prandtl number of 15, a different sequence of 
instabilities is encountered as the Rayleigh number is increased above R,. At a 
wavenumber corresponding to nine rolls, theskewed-varicose instability isencountered 
at R x 17R,. For fewer rolls, the first boundary encountered above R, is that of the 
cross-roll instability. It is this instability which is known to trigger bimodal 
convection (Busse & Whitehead 1971) a t  R 2 lOR,. The resulting fluid flow is a 
superposition of secondary rolls located in the boundary layer and oriented at right 
angles to the initial roll pattern. We will find that the initial roll pattern is still evident 
in the presence of bimodal convection, and that we can continue to study the stability 
of this roll pattern as R is further increased (e.g. to Rayleigh numbers large enough 
to encounter the skewed-varicose and knot instabilities). 

The remainder of the paper is organized in the following manner. The apparatus 
for the present experiments is described in $2. In  $§3 and 4 we discuss the fluid 
parameters and experimental procedures used in these experiments. The experimental 
results are described in two parts: results for Prandtl numbers u < 10 are discussed 
in 85.1, and for 10 < u < 20 in $5.2. Finally, in $6  we present a discussion of these 
results, relating them to current theoretical models and to results from other 
experiments. 
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2. Apparatus 
2.1. General arrangement 

The convection apparatus, which provides a radiation-shielded vacuum environment 
for the convection container, together with associated optical systems, sits on a 
vibration-isolatedoptical table. Other associatedequipment is mechanically decoupled 
from the table. The laboratory temperature is maintained constant to f l  OC, 
permitting reasonable stability of the optical and electronic component systems. A 
minicomputer handles data acquisition and many of the control and system 
monitoring functions, and a digital image-processing system aids flow-pattern 
analysis. 

2.2. Convection apparatus and temperature-control systems 
2.2.1. Environment for the convection container 

In  order to provide a suitable environment for high-precision heat-transport 
measurements together with simultaneous visual observations, careful attention has 
been given to thermal isolation of the convection container. Precision temperature 
regulation and radiation shielding are achieved by the use of five independent 
temperature measurement and control systems. The convection container and 
radiation shields are placed in an evacuated box for additional thermal isolation (cf. 
figure 3). The working fluid is contained between a 6.4 mm thick copper bottom plate 
and a sapphire top plate with horizontal walls of acrylic plastic or of glass. The 
temperature of the top plate of the container is controlled by water flowing from a 
bath circulator, regulated in three stages to better than +0.001 OC, short and long 
term. The temperature of the cooling water is monitored continuously by a quartz 
thermometer probe ( lov4 "C sensitivity) which provides an absolute temperature 
reference during calibration. Since the quartz thermometer is not tied to the 
regulation systems, it also provides an independent indication of noise or drift in water 
temperature during an experimental run. The container is surrounded by a copper 
box thermally linked to the circulating cooling water (and thus maintained at a 
temperature close to that of the container top plate). Windows at  the top and sides 
of the copper box, each consisting of a sapphire plate glued to an infrared-absorbing 
glass plate and thermally clamped a t  the edges to the copper box, shield against 
radiative heat transfer when temperatures inside and outside the box are substantially 
different. There is an independently regulated copper shield around the bottom plate 
of the convection container which is maintained within + 0.01 "C of the bottom-plate 
temperature by feedback from a d.c. bridge using a matched pair of thermistors - one 
mounted on the container bottom plate and the other on the radiation shield. 
Similarly, a matched pair of thermistors is used to maintain the temperature of the 
top plate of the copper box (and the window mounted in it) at the temperature of 
the container top plate. 

The copper box is contained in a stainless-steel box with side and top windows 
of anti-reflection-coated glass, evacuated to a pressure of < 5 pm Hg (typically 
z 2 pm), maintained by a nitrogen cold trap in series with a standard diffusion 
pump. This pressure is well below the estimated pressure, for which the mean free 
path of remaining gas molecules is comparable to the container dimensions. 

Optical access from the top of the apparatus allows for visualization of the entire 
flow pattern, usually by a shadowgraph technique. Similarly, visual access from the 
sides permits observation of a horizontal view of the flow pattern. Images of the flow 
pattern are projected on to a screen and recorded on video tape. An image-processing 
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FIQURE 3. Flow visualization and heat transport apparatus. A,  stainless-steel box, evacuated to 
x torr. B, anti-reflection-coated glass windows. C, infrared-absorbing glass sandwiched with 
sapphire (for thermal-radiation shielding). D, gold-plated copper radiation shield. E, support post : 
nylon peg and glass bead. F, thermoelectric heat exchangers. G, radiation shield for bottom plate 
of container. H,  bottom plate of the convection container. I, walls of the convection container 
(acrylic or glass). J, sapphire top plate of the convection container. K, flowing water (from external 
bath circulator). 

system is used to enhance the contrast of the video images, either in real time or from 
(time-lapse) video tapes. 

2.2.2. Rayleigh-BCnard containers 

The container is constructed from a copper bottom plate and sapphire top plate, 
with interchangeable glass or plastic walls. The copper bottom plate is illustrated in 
figure 4(a ) .  A heater constructed of non-inductively wound nichrome wire (with total 
resistance of about 300 R) is sandwiched with a thin layer of epoxy between two 
copper plates. The upper section of the bottom plate is 4.7 mm thick and has a highly 
polished gold-plated surface in contact with the fluid. Two holes of 0.25 mm diameter 
located near opposite ends of the container allow for filling and draining of the con- 
tainer through 0.25 mm i.d.. 0.5 mm o.d. stainless-steel capillary tubes. Ten 
thermistor probes are mounted at various positions about 0.4 mm below the 
polished surface of the bottom plate. Reference resistors for each thermistor are 
mounted on the 1.5 mm thick bottom plate of the sandwich. 

The walls are made as a rectangular frame (wall thickness 5.0 mm) of Plexiglas 
(container A) or of precision-ground and polished glass (container B). The top plate 
of the container is a sapphire plate. 4.8 mm thick, epoxied into the cooling-water 
channel. There is an O-ring groove in the top surface of the copp:r sandwich and 
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FIGURE 4. Convection container construction. (a) Bottom plate ; (b) container assembly. A, 
gold-plated mirror surface. B, O-ring groove. C, stainless-steel capillary fill tube. D, thermistor. E, 
nichrome wire heater in epoxy layer. F, brass tubing. G, hard solder. H, epoxy seal. I, metal-film 
reference resistor. 

Aspect ratios 
Wall 

Container r L  rw d [cml material 

A 10.61 5.32 0.461 Acrylic 
B 9.25 4.42 0.525 Glass 

TABLE 1. Convection containers 

around the top surface of each of the wall frames. The container is clamped together 
by a spring-tensioned supporting frame of low thermal conductance. Container di- 
mensions are given in table 1 and thermal properties of the wall materials in table 2. 

2.2.3.  Temperature measurement and regulation 
There are five independent temperature-regulation systems in the experiment as 

discussed above, and two additional temperature-measurement systems. A refriger- 
ated bath circulator ( 5  l/min circulation rate) regulates the cooling water temperature 
to a stability of f 0. 1 "C over our operating range of between 10" and 80 "C. The water 
passes through an additional mixing chamber (cf. figure 5 )  with approximately a 50 s 
thermal time constant, and then past a heater which is controlled by feedback from 
a thermistor in a d.c. bridge circuit. The thermistor is mounted a few cm ahead of 
the inlet-tube fitting of the experimental chamber. The temperature of the water at 
this point is stable to fO.OO1 "C for short times ( 5 1 min) and to & O . O l O  "C for longer 
times (2 1 h). 
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Thermal Thermal 

at 25 "C at 25 "C 
conductivity1*z-4* diffusivity2q 39 43 

Material [erg/cm s "C] [cm*/sI 

Acrylic 2.0 x 104 1.1 x 10-3 
Glass 9.5 x 104 4.7 x 10-3 

Copper 4.01 x 107 1.16 
Sapphire 4.6 x lo8 0.151 

Thermal conductivity of acrylic from K. Eiermann & K. H. Hellwege, .I. Polymer Sci. 57, 

Thermal properties of the glass provided by the manufacturer, Hellma Cells, Inc. (West 

Thermal diffusivity of acrylic from H. R.  Simonds, A. J. Weith & M. H. Bigelow, Handbook of 

4 Thermal properties of copper from Handbook of Chemistry and Physics, 41st edn (ed. C. D. 

Thermal properties of sapphire from Themtophysical Properties of Matter, Vol. 2 (ed. Y. S. 

(1962), 102. 

Germany). 

Plastics, 2nd edn, D. van Nostrand Co., New York, 1949. 

Hodgnor), Chemical Rubber Publishing Co., Cleveland, Ohio, 1959. 

Touloukian), Plenum, 1970. 

TABLE 2. Thermal properties of convection containers 

FIGURE 5. Cooling-water circulation system. 

A third stage of regulation is provided inside the experimental chamber of an a.c. 
bridge circuit. The incoming water flows through the temperature-regulated side of 
a thermoelectric heat exchanger, then across the sapphire top plate of the container 
and into a rectangular copper tube anchored to the copper box which shields the 
container. The copper tube provides a heat sink for the heat exchanger, which serves 
to fine-tune the temperature of the water flowing across the container. The input 
signal for this regulation is provided by one of six thermistors which are mounted 
in a row, embedded in the 00w channel immediately adjacent to the upstream edge 
of the sapphire plate and about 0.5 mm below the flowing water (cf. figure 4b). Two 
metal-film reference resistors are mounted on the copper surface adjacent to each 
thermistor. The two resistance values were chosen to  give optimum sensitivity for 
different temperature ranges. By mounting the resistors adjacent to  the respective 
thermistors the very small temperature dependence of the metal-film resistors was 
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automatically incorporated into the calibration. The 0.5 mm diameter glass-probe 
thermistors were mounted with thermal grease and monitored by a five-wire a.c. 
bridge circuit (cf. Mueller, Ahlers & Pobell 1976). A similar set of sensors was mounted 
on the downstream side of the sapphire plate. 

While one thermistor was used to regulate the water temperature, any of the other 
thermistors could be monitored by a second a.c. bridge. For large heat flux through 
the container (from the heater embedded in the container bottom plate), the 
temperature change 6T between incoming and outflowing water was consistent with 
the heat capacity of the flowing water. Typically the temperature rise was x 0.2 yo 
of the vertical temperature difference across the container AT ( 6 0.001 "C at R = R, ; 
i.e. of the order of magnitude of typical random fluctuations and drift in the 
cooling-water temperature); and 6T/AT 6 0.7 yo at maximum heat input. However, 
at  large values of heat flux the heat transfer through the sapphire and copper was 
better than transfer into the cooling water, so the regulation system suppressed the 
temperature of the incoming cooling water by a few millidegrees (about 0.008 "C/W) 
below the thermistor temperature. Apart from some of the calibration tests the second 
a.c. bridge was used to monitor one of the thermistors in the container bottom plate. 
The quartz thermometer probe, which was mounted directly in the flowing water 
about 4 cm upstream from the regulation thermistors, provided absolute-temperature 
readings as well as an independent check of regulation stability. 

2.3. Optical systems 

The optical system usedfor flow visualization by vertical and horizontal shadowgraphy 
is sketched in figure 6. A 25 mW He-Ne laser is expanded to 100 mm diameter and 
collimated with an adjustable telescope. The beam is divided by a 50150 beamsplitter ; 
half of the output is sent horizontally through the container, and half is directed 
vertically on to the container from above. As the vertical beam passes through the 
convecting fluid, both before and after its reflection in the polished bottom plate of 
the container, it  is refracted by the lateral gradients in optical index of the fluid. These 
gradients are produced by the non-uniform lateral convective temperature profile. 
Thus, light rays which pass through cold, dense, decending fluid are sightly focused, 
while those in warm regions are defocused. The image projected on to a screen placed 
in the optical path some distance away from the container exhibits a pattern of dark 
and light regions which delineate the regions of vertical flow (the convective roll 
boundaries). As shown in figure 6, two images of the vertical shadowgraph pattern 
were formed. For weak flow patterns just above R, an optical path length of 2.7 m 
from the container to the viewing screen was useful. For flow patterns at R 2 10R,, 
this pattern was substantially distorted, so a beamsplitter was used to form a second 
shadowgraph image at a distance 1.4 m from the container, which was displayed on 
the same screen. 

As mentioned above, a fraction of the laser beam is also directed horizontally 
through the container, in a direction parallel to its shorter sides. The shadowgraph 
thus formed is displayed and recorded along with the two vertical shadowgraphs. This 
horizontal shadowgraph is useful for examining the flow pattern as a function of depth 
in the fluid, especially when the flow is in the form of straight rolls parallel to the 
short sides of the container. 

The three shadowgraph images are recorded, along with numerical data in an LED 
display, by a high-resolution video camera. Video tapes of the images are analysed 
using the digital image-processing system described below. 

It is useful to point out that shadowgraphs do not necessarily yield lomE 
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- Laser input 

Short-path (1.4 m) 
vertical shadowgraph 

Long-path (2.7 rn) 
vertical shadowgraph 

Horizontal 
shadowgraph 

Mirror-polished 
bottom plate of cell 

FIGURE 6. Optical system for flow visualization by shadowgraphy. 

information, especially in the far field. The intensity at a given point in the image 
may include contributions from light rays deflected from strongly refracting regions 
distant from the corresponding point in the fluid. Truly localized information about 
the flow can only be obtained from light-scattering techniques such as LDV, or by 
tomographic techniques, such as multiple-path interferometry. 

2.4. Video system and image processing 
The shadowgraph images produced using the techniques described above are viewed 
with an RCA high-resolution video camera, displayed in real time on a video monitor, 
and recorded on VHS format t in. videotape casettes. Because of the long timescales 
associated with these experiments, we typically record five-second segments made 
a t  two-minute intervals. This mode of sampling is usually adequate to allow us to 
monitor all relevant transitions in the convective flow patterns. At moderate and high 
Reynolds numbers, the image contrast and noise levels on the videotape are sufficient 
to allow us to clearly identify these patterns. At low R,  however, this is not the case, 
and the image contrast is dominated by visual artifacts unrelated to the flow pattern. 
In order to eliminate these artifacts and enhance the contrast in the convective flow 
pattern, we have installed a Digital Graphics System CAT-1631 digital image- 
processing system. The front end of this system can perform 8-bit digitization of a 
full 512 x 512 pixel video image at video rates (30 frames/s). The size of the image 
of our convection container is adjusted to  fill approximately 140 x 200 pixels, and 
each frame contains all three of the shadowgraphs described in the previous section. 
We have developed a menu-type software system which allows us to interactively 
perform colour coding, picture arithmetic, spatial averaging, statistics, and a limited 
range of geometric transformations. These operations can also be called in software 
programs. One such program allows identification of the flow pattern in an image of 
a weakly convective state by subtracting from it an image of the container made just 
below the onset of convection. This background-free image is then rescaled for 
maximum contrast. This program allows identification of a videotaped convective 
pattern a t  values of R down to z l.05Rc. More sophisticated algorithms utilizing 
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multi-frame averaging, background normalization and spatial convolution allow 
pattern recognition for ( R  - R,) /R,  2 0.01, using live images. 

2.5.  Computer systems 
Most of the data acquisition and experimental control, and some monitoring 
functions were performed by a PDP 11/23 minicomputer, while data processing and 
analysis were accomplished by a time-shared VAX 11/780 computer, hardwired to 
the lab minicomputer. Under the supervision of the PDP 11/23, the voltage across 
the container heater was set by a Fluke Model 42758 4-terminal power supply; heater 
current was monitored by use of a Hewletk-Packard Model 3456 multimeter which 
could also be used to measure the (four-terminal) heater resistance as a cross-check 
for determining heater power. A multichannel analog-to-digital converter served to 
digitize the a.c. bridge offset which is a measure of the bottom-plate temperature. 

3. Definition of the parameters and fluid properties 
We use L, W ,  and d respectively to denote the container length, width and height. 

The major and minor aspect ratios are then r, = L/d  and r, = W/d.  The kinematic 
viscosity is v = q / p  and the thermal diffusivity is K = A/pc,, where A is the thermal 
conductivity, p is the fluid density, c p  is the heat capacity per unit mass a t  constant 
pressure and 7 is the shear viscosity. The Prandtl number is c-r = v / K .  

The Nusselt number N is the ratio of the effective heat transport of the fluid relative 
to transport due to the (static) conductivity alone. Thus, below the critical Rayleigh 
number N = 1 ; above the critical Rayleigh number N = Aeff/A, where Aeff takes into 
account heat transport due to both conduction and convection. 

The Rayleigh number is defined by R = g a , A T d 3 / ~ v ,  where g is the acceleration 
of gravity, a, is the coefficient of thermal expansion a t  constant pressure, and AT 
is the temperature difference across the fluid. The critical Rayleigh number for the 
onset of convection depends in general on the smallest horizontal dimension of the 
container. For a laterally infinite container R, = 1708. For a rectangular container 
of aspect ratio 5 x 10, the critical Rayleigh number is increased by about 1.3 %.t 
Hereafter we define R, = 1708, rather than the experimental onset of convection, in 
order to facilitate quantitative comparison with theory. 

Since the relevant properties of our working fluids - water and ethanol - have been 
extensively studied, the tabulated values of these properties available from standard 
reference works have been used in the computation of Rayleigh and Nusselt numbers. 
Some fluid properties at selected temperatures are presented in table 3. 

4. Procedure 
Our experimental measurements were designed to determine Rayleigh and Nusselt 

numbers as a function of time at fixed heater power while recording the corresponding 
flow pattern. This section describes our experimental procedure, the initiation of 
particular flow patterns and considerations concerning the computation of Nusselt 
and Rayleigh numbers from the raw data. 

f This was estimated by computer calculations based on the amplitude equations for our specific 
aspect ratio (Greenside t Coughran 1984; and M. C. Cross, H .  J.  Greenside & J. Tesauro, private 
communication). 
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4.1. General procedure 
For all the measurements reported here, the top plate of the container was maintained 
at constant temperature by regulation of the cooling water. Changing the cooling 
water temperature by a few degrees or more requires changing the bath circulator 
setting and adjusting the d.c. bridge for temperature regulation within a few 
millidegrees of the desired operating point. When the d.c. bridge output has 
stabilized, the a.c. bridge associated with the heat exchangers inside the intermediate 
copper box is adjusted until the quartz thermometer reading remains within 
+O.OOl "C of the desired value. 

After a change in the circulating-water temperature, the system was allowed to 
equilibrate for at least several hours and, if necessary, small readjustments were made 
in the bridge settings before data collection began. Once the system had stabilized, 
the quartz-thermometer reading was observed to be steady to within &O.OOl "C with 
respect to the a.c. bridge setting. Even after large transients the system returned to 
within &0.001 "C, implying excellent stability for both the quartz thermometer and 
the a.c. bridge. 

The usual experimental procedure under computer control was to increase the 
bottom-plate heater power &h slowly in discrete steps, waiting for equilibrium after 
each step. For an initial survey run at  a given (r, steps in R were taken at 30- to 60-min 
(10 t,-25 t ,  where t ,  is the vertical thermal diffusion time) intervals. The a.c. bridge 
readings, corresponding to the container-bottom-plate temperature, were monitored 
continuously by chart recorder and sampled by the computer at time intervals 
(typically 18 s) short compared with the vertical thermal diffusion time. 

When the survey run encountered a transition which might be affected by the step 
size or rate, the transition was repeated with much smaller steps and longer time at  
each step. For most runs, time-lapse videotape records supplemented the computer- 
data records. The numerical identification displayed in the video image allowed the 
videotape records to be correlated in detail with the computer data. 

4.2. Nusselt-number measurements 
Accurate determination of the Nusselt and Rayleigh numbers required attention to 
both carefully measuring and minimizing sources and sinks of heat. Thermal shielding 
and evacuation of the apparatus minimized external convective and radiative heat 
flow. The major contributions to the bottom-plate heating were the 4-terminal 
wire-wound heater [&,,I, the thermistors (one in a d.c. bridge [Qd], and usually one 
in an a.c. bridge circuit [QJ), and heating from the 15 mW He-Ne laser used for 
shadowgraphy [&J. 

Heating due to the a.c. bridge thermistor was negligible ( x  4 pW). Heating due 
to the d.c. bridge thermistor was strongly temperature-dependent (but accurately 
calibrated) and was typically x 100 pW. The laser heating was also small 
( x 200 pW) with a slow variation over several months as the laser aged. By 
comparison, about 15-80 mW was required to reach R, for these experiments. The 
4-terminal measurements of heater power were accurate to an estimated 

The bottom plate of the container was well radiation-shielded from the upper (and 
colder) part of the apparatus. Heat transfer laterally through the sidewalls - due to 
radiation - was small at low Rayleigh numbers and assumed to be negligible. 
However, the container walls and the supporting frame provided a heat path parallel 
to the fluid. For example, heat transfer through the glass walls was about 80% of 
that through the water for R < R,. 

0.1 yo. 
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The thermal conductivity of the walls was determined for purposes of Nusselt- 
number determination using the measured thermal conductivity and temperature 
dependence of the wall material and estimating the effective wall area in contact with 
the upper and lower container boundaries. This effective area is less than the actual 
wall cross-section because of the O-rings and O-ring grooves at the contact surfaces. 
This (one constant) value of effective area was chosen to give constant N for R < R, 
a t  all operating temperatures. I n  fact, there was a slight increase in the effective 
thermal conductivity of the walls after the container was filled, probably due to fluid 
filling the inner side of the O-ring grooves and effecting better heat transfer between 
the container wall and the sapphire plate. 

The thermal conductivity of the copper bottom plate (about 660 times that of 
water) was sufficient to  allow neglect of lateral gradients; and, indeed, thermistor 
measurements detected no lateral gradient except at very high Rayleigh number. 
However, the finite thermal conductivity of the sapphire top plate (about 50 times 
that of water) is not completely negligible. The maximum temperature difference 
across the sapphire can be estimated from the measured heat flux and the known 
thermal conductivity of the sapphire. However, because the sapphire plate is larger 
than the convection container and because of the finite thermal conductivity of the 
container walls, the temperature of the sapphire surface which contacts the fluid in 
the convection container is non-uniform. The vertical temperature difference across 
the sapphire a t  R, is approximately 1 7' of R,. For the case of water with plastic walls, 
the temperature of the lower surface of the sapphire at the edges of the container 
is larger relative to the temperaturc of the sapphire a t  the centre of the container 
by about 0.5 yo of R, at R,. For the case of ethanol with glass walls, the temperature 
a t  the edges is depressed relative to the centre by about the same amount (i.e. 0.5 yo 
of IZ, a t  R,) .  

4.3. Determination of Rayleigh number 
Computation of Rayleigh number depends on the fluid properties and the temperatures 
a t  the top and bottom of the container. The temperature at the bottom of the 
container is determined directly from thermistor measurements, while the temperature 
a t  the top of the container (i.e. a t  the lower surface of the sapphire plate) must be 
determined indirectly in the process of Nusselt-number computation. Since the fluid 
properties are temperature dependent, there are small gradients in the properties 
between the bottom and top of the container. The mean temperature a t  the half-height 
of the container was chosen for the determination of fluid properties for computation 
of Rayleigh number. This choice removes, to  first order, the dependence of R, and 
dN/dRlRc, on departures from the Boussinesq approximation (Busse 1967a; Ahlers 
1980; Walden & Ahlers 1981). Departures from the Boussinesq approximation, as 
indicated by Busse's (1967 a )  parameter P,  are small for theseexperiments. Specifically, 
P 6 0.20 a t  R = R, in all cases, so that the results should not differ noticeably from 
a Boussinesq system (Ahlers 1980; Walden & Ahlers 1981). 

4.4. Initiation of $ow patterns 
The initiation of the various symmetric flow patterns employed in these experiments 
was accomplished in most cases by simple exploitation of the fluid and container 
properties. One method of pattern initiation relies on the difference in thermal 
diffusivity between the container walls and the working fluid. For example, the 
thermal diffusivity of the glass wall (container B) is greater than that of ethyl alcohol. 
Thus, if the container is heated from below while the top remains at  constant 
temperature, the rapid diffusion of heat through the walls causes the adjacent water 
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to be heated more rapidly than the remaining fluid; fluid near the walls begins moving 
upward, resulting in a symmetric pattern of eight rol1s.t Conversely, the thermal 
diffusivity of water is greater than that of acrylic. Therefore, if the water is heated 
from below while the top remains at constant temperature, the favoured pattern for 
container A is 10 rolls, with downward flow a t  the container boundaries. 

On a few occasions, a heating lamp projector with a mask was used momentarily 
to initiate a specific flow pattern. Since the strong influence of lateral boundaries 
prohibits the growth of arbitrary patterns, only patterns which are reasonably stable 
near R, can be initiated by heat lamp. A lamp projection mask was chosen to  generate 
a perturbation which favours the selection of the desired flow pattern.: 

5. Experimental observations 
For essentially all of the temperatures reported here, the independent variable was 

the bottom-plate-heater power Qh. Imposition of constant Qh (rather than constant 
Rayleigh number) permits high precision in heat-flux measurements. Previous studies 
have indicated that there is no significant difference in behaviour of the fluid system 
for constant heat flux or constant Rayleigh number in our operating regime (e.g. Gao 
& Behringer 1984; Walden 1983). 

While Qh was held constant at a precisely measured value (or was increased 
quasi-statically), the temperature of the bottom plate was monitored and recorded, 
and the top-plate temperature was held fixed. At constant Qh, Rayleigh number 
varies inversely with the Nusselt number. Although Rayleigh number is used as if 
it were an independent variable in $95 and 6, it should be understood that both 
Nusselt and Rayleigh numbers vary slightly a t  constant heat flux during a transition 
in flow pattern or other time-dependent behaviour. In  such cases the Rayleigh 
numbers presented here are approximate or average values, and it is expected that 
similar behaviour would occur if the Rayleigh number were held fixed and Qh were 
allowed to vary. 

5.1. Experiments for small Prandtl number ( 2  < g < 10) 

As indicated above, for container A (aspect ratio 10.6 x 5.3) the stable pattern a t  onset 
of convection obtained by increasing R sufficiently slowly was always 10 rolls parallel 
to the short side of the container. Similarly, for container B (9.3 x 4.4), the initial stable 
pattern was 8 rolls parallel to the short side of the container. Typical experimental 
results for small cr are illustrated schematically in figure 7 for g = 3.5. Beginning with 
10 rolls and heating slowly, the pattern is stable, and the rolls are essentially uniform 
in size for R < 6Rc. Above 6Rc the pattern begins to deform with increasing R (but 
remains time independent a t  constant R). Finally, a critical Rayleigh number 
R, = 6.5Rc is reached above which the (deformed) 10-roll pattern is no longer stable. 
Figures 7 (d)-(g)  illustrate the break-up of a pair of rolls at constant heat flux. The 

t The wavenumber dependence of the critical Rayleigh number for the infinite-aspect-ratio case 
(figure 2) would appear to imply that a pattern of nine rolls should be favoured near R,. In practice, 
however, although a nine-roll pattern has been observed in container B, i t  is more difficult to achieve 
than the symmetric eight-roll pattern. 
1 Chen & Whitehead (1968), for example, used a similar technique tor initiating patterns in 

large-aspect-ratio containers. They employed a rectangular grid to generate patterns of a specific 
wavenumber. In general, simple rectangular grids (of any orientation or spacing) were found to 
select the same flow pattern as no grid at all (i.e. uniform heating); effective masks for our 
experiments were usually those which provided intense heat to small areas of the container. 
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FIQURE 7. Schematic representation of a transition in flow pattern from 10 to 8 rolls in container 
A for water at g = 3.5. Solid lines: upflow boundaries; dashed lines: downflow boundaries. Time 
is measured from the onset of convection. ( a )  El = 4.5R,, t = 2:15 (h:min); (b) 6.45RC at 43:OO; 
(c) 6.542 R, a t  65:56; (d) 6.544 R, a t  66:Ol: ( e )  6.588 R, at 66:03; ( f )  6.617 R, a t  66:05; (9) 6.637 R, 
at 66:07. 

Inset: Rayleigh number versus time near the transition. The first rise in R follows a 0.62 yo increase 
in heater power. The larger increase in R two hours later (at constant heatflus) is due to the flow- 
pattern transition. 

Nusselt number decreases monotonically by about 1.8 % during this transition to an 
8-roll pattern. 

As shown in figure 8, the 8-roll pattern is stable until R 2 lOR,. Again, the pattern 
begins to distort above 10R, (figure 8 b )  ; then another pair of rolls break up a t  around 
1 2 4  (figures 8c-e) while the heat flux is maintained constant, resulting in a pattern 
of 6 rolls. With further increase in Rayleigh number the flow becomes time-dependent 



Rayleigh-BCnard convection in a rectangular container 21 1 

i 
I 
I 
I 
I 
I 
I 
I 

I I 1 
I I 
I I 
I I I 

I I I 

I 

I 
I 
I 
I 
I 
I 
I 

1 
t 
I 
I 
I 
I 
I 
I 
I 

FIQURE 8. Schematic representation of a transition in flow pattern from 8 to 6 rolls in container 
A for water for g = 3.5. Time is measured from the transition from 10 to 8 rolls. (a) R = 10.2 R,, 
t = 3:20 (h:min); (b) 12.38Rc at 7:16;  (c) 12.39Rc at  7:25; (d )  12.49Rc at 7:26;  ( e )  12.60Rc at  
7:27; and (f) 12.83RC at 1:40. 

near 18R,. The nature of this time dependence has been described in detail elsewhere 
(Walden et al. 1984); however, the underlying 6-roll pattern is still evident at much 
higher Rayleigh numbers (i.e. R > 40R,). 

If the Rayleigh number is now reduced quasi-statically, the 6-roll pattern remains 
stable until R x 9R,. Below 9R, a ‘T-shaped’ roll is formed at one (or sometimes 
both) ends of the container (figure 9). We call this a ‘soft’ pattern in the sense that 
the mean roll wavenumber (averaged over the two-dimensional pattern) can be varied 
continuously by stretching or squeezing the ‘T’. As Rayleigh number is reduced 
towards R,, the ‘soft ’ 6-roll pattern remains, but the mean roll wavelength gradually 
decreases. 

Figure 10 is a plot of Nusselt number versus Rayleigh number for the case u = 5.5. 
Heat transport is a maximum for rolls of nearly square cross-section for R near R,, 
and the maximum moves to larger wavenumber a with increasing R (Busse 1967b). 
Thus the successive transitions 10 + 8 + 6 rolls which reduce a with increasing R are 
accompanied by drops in Nusselt number. 

Sometimes a transition may involve the destruction of a single roll rather than a 
pair of rolls. This is illustrated in figure 11. The removal of a single roll always occurs 
along one of the end boundaries of the container (a topological necessity), whereas 
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FIGURE 9. Single and double ‘soft’ patterns which appear with decreasing Rayleigh number. 
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parallel rolls) are from theory which as8unies infinite lateral boundary conditions (Clever & Busse 
1974; see also note, figure 1 ) .  



Rayleigh-Be'nard convection in a rectangular container 

w w I I 
I 
I 

I 
I 
I 

I I I 
I I I 
I I 

' I  I I 
I 
I 

1 
i :  I I I 

213 

. 

I I I I 
I I I 

I I 

I 
I 

I )  I I I I I  
I l l  
I I I 
I I I \ 
I I I \ 
I a 

FIGURE 11.  Schematic representation of a typical transition from 10 to 9 rolls. 

the removal of a pair of rolls occurs in the interior of the flow, i.e. away from the 
ends. 

The same sequence of transitions (e.g. 10+8+6,  or 1 0 + 9 + 7 )  is observed 
consistently for repeated tests at a given cr, and the Rayleigh number of the transition 
is well defined and repeatable, with sufficiently small dR/dt. (The details of the 
transition, e.g. the choice of which roll pair is dissolved, are variable from one trial 
to another, however.) In  one instance a transition did not result in a stable pattern 
of parallel rolls. For cr = 3.0, beginning with a 9-roll pattern, a complicated but 
reproducible transition was observed which resulted in a twofold symmetric pattern 
with no rolls parallel to the boundaries. 

5.2 .  Experiments for large Prandtl number (10 < cr < 20) 

For Prandtl number cr 2 10, a different sequence of transitions is observed. As the 
Rayleigh number is slowly increased through R,, a pattern of 8 rolls with a weak 
transverse roll at each end is formed (barely visible as shown in figure 12a, but more 
clearly evident with computer enhancement in figure 13a). An asymmetric pattern 
can also occur a t  the same Rayleigh number, depending on the history of the flow 
evolution (figure 13k). The successive evolution then depends in detail on the initial 
pattern. Starting with a symmetric pattern (figure 12a, cr = 18) and heating very 
slowly (dR/dt < 0.2R, h-l), we find that a 'non-soft' 8-roll pattern without trans- 
verse rolls a t  the ends is established by the time the Rayleigh number reaches 7 R,. 
Near 8 R,, weak cross-rolls are visible near the corners of the container. At 11 R, 
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(d (f) 
FIGURE 12. Shadowgraph images of the evolution of an 8-roll pattern in container B for (r = 18. 

(a )  R = 2.3 R,, ( b )  5.0 R,, (c) 11.3 R,, (d )  17.5 R,, (e) 25.8 R, and (f)  32.6 R,. 

(figure 12c) the cross-rolls are apparent all along the long edge of the container. These 
cross-rolls gradually grow in intensity with increasing R, until near 15 R, they are 
visible throughout the entire container (figure 12d). At R x 32 R, a slow time- 
dependent motion is observed near an edge of the pattern, and adjacent bimodal cells 
at the edge of the pattern begin to ‘fuse’ together (cf. figure 12 f). Up to this point 
the pattern evolution is reversible with decreasing Rayleigh number without any 
evidence of hysteresis. But, after several horizontal diffusion times, ‘fusion’ of the 
bimodal cells begins a t  the opposite edge of the container, and the pattern becomes 
significantly distorted. Pattern evolution continues at constant Qh until the 8-roll 
pattern has been transformed into a distorted 6-roll pattern, similar to  that 
illustrated in figure 14d. Rapid time-dependent motion is then observed throughout 
the container; the motion is non-periodic, with frequency components comparable 
to the characteristic frequency for a fluid element to  circulate around in a roll. Busse 
& Whitehead (1974) and Berg6 (1981) have reported similar observations of the onset 
of time dependence associated with ‘fusion ’ of the bimodal cells in a large-aspect-ratio 
container. In  our experiments, however, i t  appears that  the finite aspect ratio imposes 
a degree of rectangular symmetry which prevents evolution to  the complete spatial 
disorder observed by Busse & Whitehead and Berg6. 

As Rayleigh number is increased further, the flow becomes progressively more 
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(4 (h)  
FIGURE 14. Wavenumber transitions above the cross-roll instability boundary in container B for 
c = 1 1 .  Times are measured from the onset of convection. (a) R = 27.5 R,, t = 2:30 (h:min); (b) 
43.0 R, at 8:OO; (c) 43.1 R, at 8:06; ( d )  43.2 H, at 8 : 0 8 ;  (e) 44.2RC at 8:  12; (f) 46.8 R, at 8:54; 
(9) 46.9 R ,  at 9:06; and (h) 46.8 R, at 9: 10. Frames (b)-(d)  and (f)-(h) are at constant heater power. 
The flow becomes strongly time-dependent (turbulent) above 30 R, as evidenced by the complicated 
structures in the shadowgraph images; ho\ve\-er, the basic roll structure is still well defined (roll 
boundaries are visible as broad dark lines). 

turbulent, but the roll boundaries remain well defined, if not always stationary. Above 
45 R, the roll boundaries begin to v a q .  slowly in position and angular orientation. 
As R is increased from 59 to 63 R, the roll boundaries adjust in a seemingly random 
fashion to a smaller mean wavenumber until there is a single upflow boundary near 
the centre of the container; on the avcrage the upflow boundary is parallel to the 
short walls of the container (similar to figure 14h). With decreasing Rayleigh number 
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(4 (h) 

FIGURE 15. Evolution of a pattern of long rolls in container B for CJ = 11. Times are measured from 
onset of convection. (a) R = 4.7 R,, t = 15:OO (h:min); (b) 20.2 R, at 25:OO; (c) 26.2 R, at  27:27; 
(d) 26.7RC at 27:37; (e) 27.0RC at 27:52; (f) 27.1 R, at 28:02; (9 )  28.9R, at 28: 17; (h) 29.5RC at 
28:47. Frames (c)-(f) and (g), ( h )  are at constant heater power. After the break-up of the rolls, ( e ) ,  
the flow is strongly time-dependent. 

there is a gradual decrease in mean wavenumber, but the flow pattern remains 
asymmeric until the %roll pattern returns very near R,. 

At somewhat lower Prandtl number (e.g. figure 14, r~ = l l ) ,  the underlying 8-roll 
pattern persists well beyond the onset of time dependence. Near 43 R, (figure 14b) 
there begins a slow, large-amplitude ‘breathing’ motion of the roll boundaries 
(figures 14a and b illustrate different phases of this breathing motion). Then a pair 
of rolls is removed from the container while heat flux is maintained constant 
(figures 1 4 M )  in the same manner as observed for smaller Prandtl number. Finally, 
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a t  R x 47R, another pair of rolls is removed from the turbulent flow. Although the 
flow is strongly time-dependent, there still persists a well-defined up-flow roll 
boundary a t  the centre of the container (figure 14h). Once the second pair of rolls 
has dissolved near 47 R,, however, the flow remains time-dependent down to z 10 R, ; 
the pattern still continues to evolve as the Rayleigh number is decreased until an 
8-roll pattern with ‘soft’ ends observed below 2 R,. It is typical that  this kind of soft 
pattern is observed a t  small Rayleigh number. 

The evolution just illustrated with figures 12 and 14 started with a symmetric 
pattern near R,. If we begin instead by generating an  asymmetric pattern near R,, 
the evolution is significantly different. The pattern in figure 13(a) is slightly 
asymmetric, and the asymmetry grows with increasing Rayleigh number (figure 13b). 
Weak cross-rolls are first observed in the corners near 7 R,. Near 16 R, there is a 
transition in which the ‘soft ’ roll is removed, leaving a simple 6-roll pattern with fully 
developed cross-rolls. This pattern becomes locally time-dependent near 27 R, 
(figure 13 f ). Above 45 R, the evolution of the 6-roll pattern is the same as described 
above. 

If we begin slowly decreasing the Rayleigh number again while the 6-1-011 pattern 
is still stable (i.e. below 45 RJ, the cross-rolls begin to  fade near 12 R,, and bimodal 
convection is gradually replaced by a pattern with soft end rolls (figure 13h). As R 
is decreased further, a series of transitions (figures 13i-k) carries the pattern back 
to the initial pattern (figure 13b) below 2.5 R,, or to  the symmetric ‘soft’ pattern 
(figure 12a). Near R, a continuous variation of the left-right symmetry - e.g. as 
illustrated by figures 13a (nearly symmetric), 13b (asymmetric) and 13 k (intermediate 
between 13a and 13b) - seems to be possible depending on flow history, the rate of 
change of Rayleigh number, and the Prandtl number (i.e. influence of the zigzag 
instability, cf. figure 2). 

The onset of the cross-roll instability for rolls parallel to  the long dimension of the 
container is illustrated in figure 15. Time dependence is initiated with the break-up 
of the parallel roll pattern (figures 15d-f). Note that the final pattern which evolves 
from the break-up (figure 15h) is similar to that which derives at higher Rayleigh 
number from the initial %roll pattern (figure 14h). As R is decreased quasi-statically 
toward R,, the flow pattern re-anneals to  8 short rolls. 

6. Discussion of results 
The experimental observations reported in $ 5  fit remarkably well into the 

framework of the two-dimensional stability theory, provided one makes plausible 
allowances for the experimental imposition of finite lateral boundaries. The major 
influence of the sidewalls, illustrated in that section, has been to shift the boundaries 
in Rayleigh-number, Prandtl-number, wavenumber space of the various instabilities 
studied by Busse & Clever (1979) ; Clever & Busse (1974) ; Busse (1978) ; Bolton, Busse 
& Clever (1983) and Busse & Whiehead (1971, 1974). 

6.1. Occurrence of soft patterns 

Near the onset of convection in container B (aspect ratio 9.3 x 4.4),t we normally 
observe a pattern of 8 parallel rolls with soft end rolls. As the Rayleigh number is 
increased, there is a gradual transition to  a non-soft 8-roll pattern; the transition is 
not well defined in Rayleigh number. For R < 2 R,, we also oberved what appears 
to be evidence of zigzag instability. For example, close to R, the patterns of 6 short 

t Our study of patterns close to R, was confined primarily to container B. 
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0 

Prandtl number 
FIGURE 16. Rayleigh number v e r m  Prandtl number for transitions to 'soft' end rolls with 
decreasing Rayleigh number. Values of initial mean roll wavenumber are indicated. Container A 
with water, 0 ; container B with ethanol, 0. 

rolls and 4 long rolls are observed to be unstable to the soft 8-roll pattern as illustrated 
in figure 13. Figure 16 indicates the observed transitions from parallel rolls to soft 
patterns with decreasing Rayleigh number. Note that the transition Rayleigh number 
depends strongly on both the Prandtl number and the initial roll wavenumber. These 
dependences are consistent with the predictions of the theory for infinite aspect ratio 
discussed above, but the experimental Rayleigh numbers are about 2 to 3 times as 
high as expected from the theory. 

In  numerical calculations using the amplitude equations, Greenside t Coughran 
(1984) have observed ' soft ' patterns near R, as predicted by Pomeau & Zaleski (1981 ). 
In the simulations, short cross-rolls of the critical wavenumber appear at the end 
boundaries of the container very close to R,, and penetrate a horizontal distance of 
order e-4 into the fluid, where e = (R/R,- 1). This boundary-induced cross-roll 
instability may be relevant to our observations of soft patterns for B 4 1 ,  but the 
theory is not applicable to the observations for B 2 1 summarized in figure 16. 

The studies of Busse t Whitehead (1971) demonstrated that the cross-roll 
instability has somewhat different manifestations, depending on whether the Rayleigh 
number is above or below the region of stable two-dimensional convection. A t  small 
Rayleigh number the cross-roll instability far away from the boundaries in a 
large-aspect-ratio container appears as patches of rolls with orientation perpendicular 
to that of the initial parallel-roll pattern, and the cross-rolls have wavenumber ac" close 
to the critical wavenumber (3.1 14) for onset of two-dimensional convection. Busse 
& Whitehead reported observations of such cross-roll patterns which are locally 
similar to our soft patterns. If the cross-roll instability is the origin of the soft patterns 
which we observe, then the effect of finite aspect ratio appears to be an upward shift 
of the instability boundary relative to that plotted in figure 1. At large Rayleigh 

8 F L X  163 



220 P.  Kolodner, R. W .  Walden, A .  Passner and C .  M .  Surko 

number the cross-roll instability appears as bimodal convection, which will be 
discussed in $6.3. 

6.2. Roll-number transitions 

The roll-number transitions observed in our experiments appear to be a manifestation 
of the long-wavelength skewed-varicose instability and the knot instability predicted 
by Busse & Clever (1979) for infnite aspect-ratio containers and lop2 5 a 5 102.t 
According t o  theory, these instabilities have no intrinsic time dependence, but the 
two-dimensional parallel-roll pattern becomes unstable to three-dimensional pertur- 
bations. Experiments at large aspect ratio, r z 40-150 (Busse & Whitehead 1974), 
have demonstrated that these instabilities continues to grow until the pattern is 
completely disorganized and exhibits chaotic time-dependent behaviour. Subsequent 
experiments in smaller containers (r < 35) have also attributed the onset of time 
dependence to the skewed-varicose instability (Behringer, Gao & Shaumeyer 1983 ; 
Gollub, McCarriar & Steinman 1982 ; Walden 1983). 

In  our experiments, however, the finite lateral boundary conditions impose a 
rectangular symmetry which tends to stabilize the two-dimensional character of the 
flow. As the Rayleigh number is increased across the stability boundary, the flow 
pattern becomes progressively distorted (yet stationary), until a transient reorgani- 
zation of the pattern occurs. Remarkably, in nearly all cases the result is a stable 
nearly two-dimensional roll pattern of smaller wavenumber. Figure 17 summarizes 
the experimentally observed transitions compared with the approximate calculated 
values of R for the skewed-varicose and knot instabilities. Although present theory 
does not provide information about the effects of imposing finite lateral boundaries 
on the skewed-varicose and knot instabilities, it is plausible to expect that onset of 
a long-wavelength instability will be suppressed to higher Rayleigh number. In  all 
cases the experimental wavenumber and Prandtl-number dependences are quali- 
tatively consistent with the skewed-varicose and knot instabilities. 

6.3. Bimodal convection 

At large Prandtl number (a >, lo),  when the cross-roll instability is encountered a t  
large Rayleigh number, it appears as an instability of the thermal boundary layers 
near the top and bottom of the fluid layer. A two-dimensional rectangular lattice of 
rolls (bimodal convection) is observed with weak cross-rolls superimposed on the 
original convective rolls (Busse & Whitehead 1971). The wavenumber of the cross-rolls 
increases with increasing Rayleigh number. At larger Rayleigh number, the time- 
independent bimodal convection becomes oscillatory or undergoes a transition to a 
more complex pattern, presumably in response to higher-order instabilities (Busse 
6 Whitehead 1974; Whitehead & Chan 1976). In our experiments the onset of 
bimodal convection with increasing Rayleigh number is a very gradual transition in 
which weak cross-rolls first appear a t  the corners of the convection container; then 
a t  higher Rayleigh numbers the cross-rolls grow to fill the entire container. Since the 
definition of the onset of the instability is rather subjective, we have chosen to  
indicate both the appearance of the corner cross-rolls (denoted by the error bars) in 
figure 18 and the later appearance of full bimodal convection (a). For u = 2.84 and 
2.72 the appearance of full bimodal convection nearly coincides with the cross-roll 
instability of the stability theory for infinite aspect ratio. 

t Many experiments using large-aspect-ratio containers have reported a decrease in mean roll 
wavenumber with increasing Rayleigh number. In one instance (Gollub & McCarrier 1982) the 
observed dependence has been attributed to the skewed-varicose instability. 
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FIQURE 17. Rayleigh number of transitions in roll number aa a function of mean roll wavenumber. 
(a) Measured values for patterns of rolls parallel to the short side of the container. Prandtl numbers 
are indicated; solid lines are meant only to guide the eye. Mean wavenumber plotted is that prior 
to the transition (in which a roll or roll pair is removed from the container). Container A filled with 
water, 0 ;  container B with ethanol, 0 ;  container B with water, 0. (b) Theoretical stability 
boundaries assuming infinite lateral boundary conditions for skewed-varicose (dashed lines) and 
knot (solid lines) instabilities. Prandtl numbers are indicated. (Note that the experimental data 
appear to reflect the cross-over of the knot and skewed-varicose instabilities.) 

For the small-wavenumber case, a = 2.04, things are more complicated. According 
to theory, for Prandtl numbers 2 15, two-dimensional convection at this wavenumber 
is unstable to the cross-roll instability for all Rayleigh numbers. Thus, for cr = 19, 
there is a gradual transition from the soft end rolls near the onset of convection to 
fully developed bimodal convection at  large Rayleigh number. For = 15, the 
transition from a soft pattern to bimodal convection is more clearly defined, but there 
is no range of Rayleigh numbers for which purely two-dimensional convection is 
observed. 

The wavenumber di of the bimodal cross-rolls increases with increasing Rayleigh 
number and decreases with increasing Prandtl number. Our observations are 
qualitatively consistent with the studies of Busse & Whitehead (1971); however, a 
satisfactory quantitative comparison is not possible for two reasons : first, the 
calculations of Busse & Whitehead were taken in the limit of infinite Prandtl number 
and did not consider Prandtl-number dependence ; secondly, their experiments were 
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FIGURE 18. Rayleigh number versus Prandtl number for the onset of various instabilities in 
container B. The initial patterns are (a) 4 rolls parallel to the long side of the container, d = 2.84; 
(b) 8 parallel rolls, d = 2.72; and ( c )  6 parallel rolls, d = 2.04. A, cross-rolls visible throughout the 
cell (bimodal convection) (the bottom of the error bars indicates the appearance of cross-rolls at 
corners of the container); 0, transition to  ‘soft’ end rolls with decreasing Rayleigh number; 0, 
onset of time dependence, in some cases accompanied by m, break-up of parallel roll boundaries 
into a complicated flow pattern; 0, transition to greater wavenumber (pattern is strongly 
time-dependent before and after transition, but roll boundaries are still well defined). The broken 
curves are from theory assuming infinite lateral boundary conditions (see note, figure 1). Knot = 
knot instability, CR = cross-roll and SV = skewed-varicose. 

at high Prandtl number (g = 100). In addition, in many instances d was not well 
defined in our experiments ; for instance, there was often non-uniform spacing 
between cross-rolls. With increasing Rayleigh number, transitions in wavenumber 
sometimes occurred by the gradual growth of a new cross-roll pair between existing 
cross-rolls. For experiments with 4 long rolls, adjustment of d with increasing R 
occurred by stretching at  the end cross-rolls until finally a new pair of cross-rolls was 
nucleated near one end. There was not a reverse transition with decreasing Rayleigh 
number; the centre rolls gradually faded with decreasing R. 

6.4. Onset of time dependence 
Bolton, Busse & Clever (1983) have predicted a series of time-dependent instabilities 
with well-defined frequencies which are expected to occur a t  sufficiently small a and 
large Rayleigh number (see figure 1). For small Prandtl numbers (2.2 < CT < 5.5) ,  the 
observed onset of time dependence (cf. figure 19) appears to be consistent with their 
predictions in that the time dependence manifests itself as oscillations at the 
relatively high frequency characteristic of a typical fluid element advecting around 
in a roll. In addition the wavenumber and Prandtl-number dependences of the 
threshold Rayleigh number Rt for the onset of time dependence are qualitatively 
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FIGURE 19. Rayleigh number of the onset of time dependence versua Prandtl number. Initial mean 
wavenumbers are indicated ; note that patterns are sometimes significantly distorted from parallel 
rolls at the onset of time dependence, however. Container A filled with water, 0 ; container B with 
ethanol, 0 ; container B with water, 0. The dashed lines are contours of the oscillatory instability 
(first odd mode) assuming infinite lateral boundary conditions. Mean wavenumbers are indicated 
on the contours. (See note, figure 1. )  

correct. The observed values of R, are about 40% larger than those predicted, but 
this may be due to finite-aspect-ratio effects. 

The finite-frequency instabilities of Bolton et al. have different frequencies in 
different parts of the container when the flow pattern is distorted from a set of parallel 
rolls (Walden et al. 1984). Thus the spatial pattern is very closely related to time 
dependence. This effect appears to determine the number of incommensurate 
frequencies which can appear before the onset of chaos. In the experiments described 
here, as many as five incommensurate frequencies have been observed simultaneously 
without chaos. Since similar behaviour is not observed in very large or very small 
containers, the regime of aspect ratio discussed here provides us with a new and 
interesting regime in which to study the onset of time dependence and the approach 
to chaos. 

For Prandtl numbers greater than about 5 ,  these oscillatory instabilities are 
preceded by other instabilities for all wavenumbers. For example, for high Prandtl 
number, the cross-roll instability (and bimodal convection) is encountered prior to 
the onset of time dependence. Busse & Whitehead (1971, 1974) have investigated 
experimentally and theoretically the cross-roll instability and the onset of time 
dependence for large Prandtl number. In  this case, time dependence occurs as an 
oscillatory instability of the cross-rolls, which will be described in the next section. 

6.5. Higher-order instabilities 
As discussed above, the onset of time dependence for (r 2 10 occurs as an oscillatory 
instability of the cross-rolls or as a collective instability which leads immediately to 
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a transition in the flow pattern and chaotic time-dependent behaviour. The ‘collective 
instability’ observed by Busse & Whitehead (1974) is so named because in containers 
of large aspect ratio it grows from bimodal convection by ‘collecting’ between three 
and six bimodal cells into one large cell of ‘spoke-like’ appearance,t much like those 
in figure 14h or 15h. However, two-dimensional stability theory does not provide 
information about this instability since it arises from a three-dimensional flow 
pattern. The Rayleigh number R, for onset of time dependence is a strong function 
of three parameters : Prandtl number, roll wavenumber a, and cross-roll wavenumber 
&. Again, the limited parameter range of the study by Busse & Whitehead (1974) and 
the substantial uncertainty in determination of OZ in our experiments do not permit 
a satisfactory quantitative comparison of their theory and experiments with our 
results. In general, the values of R, estimated from Busse & Whitehead (1974) were 
1&20 Yo greater than our experimental values, and the dependence of R, on c, a and 
& appears to be consistent with their predictions in that R, increases with increases 
in each of these parameters. 

For the parameter range of our experiments, i t  appears that both the knot and 
skewed-varicose instabilities can influence a pattern transition to  a smaller number 
of rolls even for three-dimensional flows caused by other instabilities. For example, 
in experiments a t  high Prandtl number we have seen similar transitions in the flow 
pattern, even though convection is strongly time dependent and far beyond the 
cross-roll instability. Because the underlying flow pattern still has a degree of 
rectangular symmetry, it appears that  the skewed-varicose and knot instabilities are 
still in some fashion relevant. This is confirmed by Prandtl-number and wavenumber 
dependence of the transition Rayleigh number consistent with the predictions of 
two-dimensional stability theory and our observations a t  lower Prandtl number (cf. 
figure 17). 

7. Concluding remarks 
I n  this paper we have studied the mechanisms which determine pattern selection 

in a rectangular container having approximate aspect ratio 10 x 5, which we have 
characterized as finite but not small. The transitions between flow patterns occur at 
Rayleigh numbers and wavenumbers which correspond qualitatively to  the predictions 
of the theory for an infinite system of parallel rolls (Busse & Clever 1979; Clever & 
Busse 1974; Busse 1974; Bolton, Busse & Clever 1983; Busse & Whitehead 1971, 
1974). The long-wavelength skewed-varicose and knot instabilities are found to be 
suppressed by the finite aspect ratio to  Rayleigh numbers about 30% higher than 
those predicted for infinite aspect ratio. On the other hand, the onset of the cross-roll 
instability seems to be enhanced by the finite boundary conditions, with bimodal 
convection occurring at the corners of the container a t  somewhat lower Rayleigh 
numbers than those predicted for infinite aspect ratio. This correspondence between 
the results for finite-aspect-ratio containers and the theory assuming infinite aspect 
ratio gives hope that one might be able to treat the stability of patterns of parallel 
rolls in a moderate-sized rectangular container by a perturbation of the stability 
analysis for the infinite-aspect-ratio case. 

I n  the experiments reported here, the skewed-varicose and knot instabilities are 
found t o  trigger successive transitions between time-independent flow patterns. This 
contrasts with behaviour observed in much larger containers where, at the first onset 

t Such ‘ spoke-pattern ’ convection in large-aspect-ratio containers is described by Busse & 
Whitehead (1974) ; it appears to be related to the knot instability (Busse 1981). 
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of the skewed-varicose (or knot) instability, the flow pattern evolves to  a complicated 
and ever-changing three-dimensional pattern of rolls. The boundary-induced stabil- 
ization of an almost two-dimensional roll pattern in the present experiments has also 
allowed us to  study the transition to time dependence in a region of Rayleigh-number 
and wavenumber space where we are able to  observe the new time-dependent 
instabilities recently predicted by Bolton, Busse & Clever (1983). 

The data presented here raise a number of questions about Rayleigh-BBnard 
convection in finite-aspect-ratio containers. Since we are able to stabilize to much 
larger Rayleigh number the wandering of the rolls (which is observed in larger 
containers at R 5 5 R,,), we are able to  observe several transitions in the flow pattern 
with increasing Rayleigh number before the onset of time dependence. It would now 
be of interest to understand in a more quantitative way the regimes of aspect ratios 
where the system behaves in a different manner (i.e. mimicking the behaviour observed 
in very large or very small containers). 

We wish to acknowledge helpful discussions with E. W. Bolton, F. H. Busse, M. C. 
Cross, H. S. Greenside, P. C. Hohenberg and J. Tesauro, and the extensive technical 
assistance of G. Dimino and N. Hartsough. 
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